# Let B be the set of all positive integers which are divisors of

Let B be the set of all positive integers which are divisors of 70; i.e., B = {1, 2, 5, 7, 10, 14, 35, 70}. For any a, b ϵ B, let a + b = l.c.m of a, b; a ∙ b = h.c.f. of a, b and a’ = ⁷<span style=’font-size: 50%’>/₀. Then with the help of elementary properties of l.c.m. and h.c.f. it can be easily verified that (B, +, ∙, ‘, 1, 70) is a Boolean algebra. Here 1 is the zero element and 70 is the unit element.